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increases to 2.6 W but the efficiency drops to approximately

10 percent. Assuming some RF power loss to the resonant

circuit (and lead resistance), these predictions agree reasonably

well with the observed performance at 9.6 GHz: 1.8 W, 8.8

percent at VB = 18 V and 2.2 W, 7.1 percent at 28 V.

VIII. CONCLUSIONS

It is concluded that Q-mode operation is present in the

experimental devices that are supercritically doped for the

following reasons. The RF voltage is sufficient for domain

quenching or LSA operation, but the LSA mode has been

shown not to exist in these devices. All of the experimental

characteristics are consistent with the Q mode; for example,

power and frequency increase monotonically with bias-voltage

increase. The oscillators are widely tunable above the transit

time frequency. The chip RF capacitance is two to four times

the low-field capacitance. Finally, the RF power and effi-

ciency calculated by Q-mode theory for operation at 20 and

30-V bias are in good agreement with the values measured

experimentally, if some RF circuit loss is assumed to be

present. Thus experiments with pulse-biased highly doped TE

devices have verified Q-mode operation in X-band waveguide

circuits over a bias-voltage range from approximately twice to

approximately six times the threshold value. A broad fre-

quency range of operation was obtained for proper RF circuit

loading of chips in small device packages. The highest effi-

ciency was obtained with GaAs material of n+-n-n+ construc-

tion which exhibited a current drop of greater than 30 percent.

Analysis of the post-type waveguide circuit showed that

oscillation occurs with TE devices when the post to short-

plane separation is about one-half waveguide wavelength,

When viewed from the chip, the circuit is operating slightly

below the frequency of parallel circuit resonance. Circuit RF

loading effects were shown to be important for wide band-

width operation of quenched-domain mode oscillators.
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On the Optimum Design of Tapered Waveguide Transitions

RUDOLF P. HECKEN AND ALFREDO ANUFF

Abstract—It has been found experimentally that the conventional
optimization of waveguide tapers for the interconnection of circular
waveguides with different diameters fails if the ratio in the dhuneters
becomes too large. With the aid of an accurate numerical analysis
program, the reason for the failure was found to be the reconversion
from the unwanted mode to the main mode, which is neglected in all
known synthesis procedures. The performance of tapers can be con-
siderably improved by the implementation of other design equations
and establishing new design criteria. This results in somewhat longer
tapers. Various tapers were designed according to these procedures
for a maximum of –40-dB H02-mode level between 40 and 110 GHz,
and preliminary measurements on fabricated units substantiate the
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improvement. It is further shown that the mode conversion at cutoff
does not exhibit any singularity.

I. INTRODUCTION

I

NHOMOGENEOUS TEM transmission lines and wave-

guides in the form of tapered matching sections or

tapered waveguide transitions are frequently used for

very broad-band applications [1 ]–[3 ]. For the intended use of

millimeter waves as a transmission medium in communica-

tion systems, tapered circular waveguide transitions are

needed which do not generate spurious modes above a toler-

able level [4]. The problem in the design of these inhomoge-

neous waveguides is basically that of specifying a distributed

inhomogeneity for minimum mode conversion and/or mini-
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mumreflections over a specific frequency range. If the physi-

cal length of the device is at the same time kept at a minimum,

the design is optimum.

Based on the representation of the electromagnetic field

in the inhomogeneous region by an infinite set of cylindrical

normal modes, an approximate analytical solution of the

minimization of the mode conversion has been reported by

Unger [3] and Tang [5], but it appears that these theories

lack quantitative restrictions which indicate the range of

validity of the approximations involved.

It has been found, experimentally at first, and then with

the aid of a computer program, that the optimization of tapers

based on these theories may result in large deviations from

the design objectives, namely in high mode conversions. The

design theory was then reexamined and the quality of the

approximations checked with a digital analysis program. It

turned out that all near-optimum distribution functions for

the inhomogeneity fail to yield acceptable tapers, except for

small differences between the waveguide radii to be inter-

connected by the transition.

Though the reasons for the deviations between syn-

thesized and analyzed performance are now exactly known, it

has not been possible to devise a rigorous synthesis procedure.

However, the studies resulted in guidelines allowing the

design of tapers which are close to an optimum design. The

numerical anal ysis program is used to verify the performance

and, if necessary, to modify the design such that the conver-

sion does not exceed the requirements.

In the following sections, some equations forming the

basis for the exact analysis and the synthesis are repeated in

order to be able to point to differences between the conven-

tional designs and to elaborate on the approximations which

ultimately lead to unsatisfactory results. Although the discus-

sion is restricted to tapered sections of’ circularly symmetric

waveguides which are excited by Hb modes only, the results

and conclusions can be applied to many coupled wave prob-

lems.

11. ABSTRACT OF THE DESIGN THEORY

A tapered but otherwise perfectly circular and Iossless

waveguide section is known schematically in Fig. 1. With an

HOI mode incident on this inhomogeneous section, the

strongest mode conversion occurs between the Hoi and Hoz

modes. If the taper is gradual enough, the interaction with

higher Ho. modes may be neglected, and the conversion

process is described by a quadruple of coupled transmission-

line equations [3]:

dVn 1 da 2knk~
— = –jq.@In + – —

dz
v.

a dz k~2 — kxz

dIn 1 da 2k,k~
—=–j Evn+_ —1
dz @Po a dz k~z — kn2 “

~=1, m=2, andti=

V. and 1. are the mode voltages and mode

2, m = 1. (1)

currents of the

Ha. mode: &(z) is the propagat~on constant of the nth mode

propagating in a cylindrical waveguide of a particular cross

section having a radius a(z):

/3.’ = OJ2POe0– (k~/a)2
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Fig. 1. Schematic view of taper contour.

where co is the angular frequency, PO the free-space magnetic

permeability, e~ the permittivity of vacuum, and k. is the

nth zero of the Bessel function of the first kind, Y1. For modes

above or below cutoff, Unger [3] and later Tang [5] trans-

formed the mode voltages and currents into forward- and

backward-scattered waves. However, useful design informa-

tion could be obtained only after neglecting both the reflec-

tions due to the variation of the local wave impedances and

the conversion into backward-scattered waves. Then (1) re-

duces to only a pair of coupled differential equations in for-

ward waves of the two modes .41 and AZ. In a further step

these waves are transformed into quasi-orthogonal waves

WI and Wz. The solution for Wz at the end of the taper, with

reconversion of Wz into WI neglected, has been given as

I W,(L)\ N ~” (26) e-~2P dp
o

(2)

in which p(z) can be interpreted as an accumulated phase

function [~L =p(L) ] while 20 is the “distribution function”

of the mode conversion along the taper.

The actual design can be accomplished with two funda-

mental equations:

sa

s

P

q(a’] da’ = sin (20) dp’ (3)

al o

and

sP COS (20) dp’
z =, ——... (4)

o A(3

yielding a and z as function of p.

Unfortunately, these equations have been further ap-

proximated by both Unger and Tang with the result that the

simplified design formulas become altogether independent of

the transformation to quasi-orthogonal waves. Therefore, the

contours of the tapers reported by these authors are not

modified by the orthogonalization procedure. This simplifica-

tion comes by replacing sin (x) and cos (x) by x and 1, respec-

tively:

sa
g(a’) da’ gs‘(20) dp’ (5)

al o

(6)

It should be noted that these simple design formulas could

have been obtained by solving the coupled wave equations in

AI and AZ with reconversion from A, into Al neglected.
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III. SOME EXPERIMENTAL RESULTS

Experimental results on a taper designed with the simpli-

fied formulas (5) and (6) are reported by Unger [3]. The

sfn2 x function was chosen as the distribution function and

the taper obtained is theoretically far from optimum, having

a length of about 35.56 in. Mode conversion of less than 50

dB has been measured, a result supporting the approximate

theory. No experimental results are reported by Tang on the

optimized sin8 x taper. However, a taper using also the opti-

mized sins x distribution in connection with the simple for-

mula was designed elsewhere [7]. The end diameters were

0.2612 in and 2.0 in, respectively, and the maximum expected

mode level was — 45 dB. Measurements revealed an HoZ level

of about – 25 dB. Based also on the simple design equations,

another taper with end diameters of 0.375 in and 2.0 in was

built for a specified mode level of – 40 dB. In order to ob-

tain shorter tapers, the modified Dolph–Chebyshev distribu-

tion function was applied [6]. Experiments with this taper

indicated also a high mode level of as much as — 28 dB.

IV. THE ANALYSIS OF TAPERED WAVEGUIDE TRANSITIONS

In order to determine exactly whether mechanical

tolerances in the fabrication or other steps in the sequence of

approximations cause the fail ure of the design, a numerical

analysis program has been devised which for each desired

frequency directly integrates (1) along the length z. This

method, in consequence, does not suffer from the various

approximations made for the purpose of obtaining a synthesis

method.

The essential result of interest here is the ratio PR of the

power level of mode 2 relative to the level of mode 1 at the

input (z= O) or output (,z= L) of the taper:

Re { Vzl~*}
ML[dB] = 20 log (PR) = 20 log

Re { VIII*) “

Fig. 2 shows the computed mode level of the tapers designed

by Unger and Tang. Whereas the sinz x taper meets the re-

quirement (– 50-dB unwanted mode level below 75 GHz), the

optimized and therefore considerably shorter design by Tang

does not. Analyzing other optimized tapers with larger diam-

eter ratios, even larger deviations were found, thus confirming

the experimental results mentioned in the previous section.

Obviously, the optimization yields short tapers but also an

unexpectedly high unwanted mode level.

A. Test% on the Validity of’ the Design Equations

One of the first tests performed was to find the range of

validity of the simple design equations (5) and (6) in connec-

tion with a near-optimum distribution function. In this test,

tapers have been analyzed all of which were designed for

40-dB mode discrimination and the same frequency range but

had different diameters at the small end while a~ was kept

constant (az = 1 in). From Fig. 3 it is apparent that the simple

design equations are only useful for tapers with al larger than

0.7 in if a near-optimum distribution function is applied.

In the next test, the mode conversion of tapers has been

examined which was designed on the basis of the more com-

plicated equations (3) and (4). The distribution function and

frequency range were the same as before. As it turns out

(Fig. 4), a taper withal even as small as 0.4 in still meets the

requirement. With decreasing al the deviations again become

excessive, but it is interesting to note that the deviations
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Fig. 2. Computed HoZ-mode level of tapers designed
by Unger [3] and Tang [5].
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Fig. 3. ML as function of frequency with small end diameter as
parameter [design based on (5) and (6)].

occur now at the second sidelobe. For radii larger than 0.5 in

the specified mode level is never exceeded and in these cases,

at least, the use of the design equations (3) and (4) must be

preferred. (As an interesting case for illustration, a taper ‘

similar to Unger’s example was synthesized for the same

requirements, but the modified Dolph-Chebyshev distribu-
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tion and the design equations (3) and (4) were used. The

analyzed mode level was —47 dB, which comes fairly close

to the design goal (–50 dB). However, the length of this

taper would be only 17.92 in, mainly due to the use of the

modified Dolph–Chebyshev distribution. )

B. Mode Conversion Along the Taper

In the attempt to improve the design procedure for tapers

with still smaller radii, another test has been performed. As is

evident from the approximate solution (2), the design and the

theoretical mode conversion rely on the Fourier integral:

szZ@)=u(z)+jzl(%)= (z~)e-m’ddd&J(7)
o

where a new variable has been introduced with x = T(P/PL).

Using for 20 the modified Dolph-Chebyshev distribution of a

40-dB taper (al= 0.1875 in; a2= 1.0 in) and forp~ its minimum

value ~L ~in, (7) has been numerically integrated for values of

x between O and m. Fig. 5 depicts I w(x) I which builds up to a

large maximum at x= 7r/2 along the taper, and decreases

thereafter to its “correct” value at x =r. This large value of

Izo(x)l ~t the center of the distribution indicates that within

a certain region the coupling from mode 2 to mode 1, i.e.,

reconversion, might not be negligible in an optimized design.

To prove this, the analysis program has been modified

so as to eliminate the reconversion in (1). This condition still

maintains the effects of reflections of both waves and the

coupling from mode 1 into both the forward- and the back-

wards-traveling waves of mode 2. Analyzing the failing 40-dB

taper with this modified program showed that the taper under

these artificial conditions would have exactly the specified

mode conversion, a result which establishes the following two

important conclusions. 1) Since the design equations do not

account for the reflections and coupling to backward modes,

I
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Fig. 5. Iw(x)\, u(x), and v(x) for a 40-dB taper designed with the modi-
fied Dolph–Chebyshev clistribution for the first sidelobe level, PI = 7.1.

these effects are in fact still negligible. 2) In the conventional

optimized design of tapers with large ratios of az/al, it is the

reconversion from mode 2 to mode 1 which causes large devia-

tions from the objectives.

V. AN IMPROVED DESIGN PROCEDURE

Knowing the essential error in the synthesis, one has two

obvious means at hand to improve the design theory such

that any optimum or near-optimum distribution function is

meaningful.

A, Iterative Solution

One possibility is to use the wave equations without any

further approximations and to derive the design information

from a more accurate iterative solution. The resulting pro-

cedure is complicated and yields tapers whose analyzed per-

formance meets (as it should) exactly the specified require-

ment at the design frequency if a sufficient number of itera-

tions is made. However, below the design frequency the per-

formance is still poor if al< 0.4 in. Thus this attempt is not

useful.

B. Design with Larger values for pL min

The other and more effective method to design short but

satisfactory tapers relies on the possibility of forcing the ap-

proximate solution (2) to be valid, even when applying a

(near-) optimum distribution. This is done by increasing PL

beyond its “minimum” value. In view of (7), this corresponds

to an increase of the oscillations (see Fig. 5) of the real and

imaginary parts of w(x) and, as a consequence, it entails more

frequent cancellations in the functions u(*) and v(x), thus

preventing the rapid buildup of their amplitudes to extreme

values. The true minimum for pL must, in~general, be de-

termined for each design by trial and error; which may be-

come cumbersome as the following brief description shows.
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The prc~cedure can be based either on the simple design

equations (5) and (6) or on the more accurate equations (3)

and (4). In the following example we will use the latter be-

cause they lead to slightly ( = 5 percent) shorter tapers.

Fig. 6 shows three different graphs of the response of the

modified Dolph–Chebyshev distribution, each corresponding

to three different ripple parameters B [6]. Their values have

been chosen such that either the maximum of the first, second,

or third sidelobe reach the desired mode level of – 40 dB. For

each B value one finds a value pL min. 1 For these three pairs of

parameters (B and /JL mi.), tapers have been synthesized and

subsequent~y analyzed in Fig. 6. The design for the first side-

lobe level (p, =7. 1) deviates by 13.4 dB, but this taper is only

16.3 in long. The design for the second sidelobe (P2= 8. 1) is

still in error by as much as 6 dB, whereas the design for the

third sidelobe (p8 = 10.2) shows an error of only 0.1 dB at the

highest frequency. The lengths of these two tapers are 18.9

in and 24.0 in, respectively.

C. Mode Conversion Along a Tapey of the Improved Design

It is instructive to examine again the function w(x) for the

case where PL ~in =pa = 10.2. From Fig. 7 one finds, sur-

prisingly, that the maximum mode level along the taper is not

much smaller than in the case of the conventional design for

the first sidelobe level. However, the amplitude of mode 2

I The smallest value PL m,.= P1 corresponds to the first sidelobe and
is the one used in the conventional design method.
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Fig. 7. \w(x) 1,u(x), and V(X) for a 40-dB taper designed for
the third sidelobe level, PS= 10.2.

(represented by I w(x)\) builds up more gently and remains at

a relatively high level over a wide range of x.

From these observations we come to the conclusion that

the approximate solution of the coupled wave equations must

be mainly in error due to the continuous phase distortion of

the main mode caused by the spurious mode. This, however,

produces a large phase error in the spurious mode itself which

then, of course, does not behave in the way implied by the

Fourier integral-type solution (7).

D. Mod<jication of Design Equation (6)

The sensitivity of a design on phase distortions is shown

by the following experiment. Recognizing that (5) specifies

the increments of the magnitude of mode 2 and that (6) de-

termines the right amount of phase of that particular incre-

ment, the latter has been arbitrarily modified into

sP dp’
z=

o A/3[(1 – e(p’)1

where e(p) is an empirical function of the type

e(p) = ~E Sin (7W/pL)

with TV, being a small value found by experimentation. Using

this equation together with the corresponding equation (6),

various tapers having a — 40-d B mode level at the second side-

lobe (pZ= 8. 1) have been synthesized and analyzed. Fig. 8

shows the response of an example with W,= 0.05. This taper

meets the requirement over the whole frequency range and is

only 20.68 in long.

VI. EXPERIMENTAL RESULTS ON A DESIGN

with PHASE DISTORTION

Based on the analysis of the last design example (Fig. 8),

several tapers have been built. Since reliable measurements of

spurious modes at levels below – 40 dB are extremely difficult

and require elaborate equipment, the following simple test
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Fig. 9. Circuit to detect spurious modes.

(GHz)
f -

Fig. 8. Computed mode conversion of a taper designed with
phase predistortion (experimental model).

was performed. By mounting two tapers back to back as

shown in Fig. 9, a resonant cavity for HoZ modes is obtained

for frequencies below the lowest cutoff frequency j.z which is

determined by the smallest radius al. By transmitting an HOI

mode with f <~cz through this two-port, the H02 mode gen-

erated inside is trapped in the cavity and causes a sharp in-

crease in the insertion loss of the Hol mode at discrete fre-

quencies [8]. A resonance spike of less than 0.1 dB was the

largest in amplitude which could be identified between 60

and 70 GHz. Below 60 GHz, no resonance spikes were de-

tectable. In a similar experiment, one of the new tapers was

replaced by one of the earlier designs. In this case, spikes of

about 12 dB occur which may be compared with the 0.1 dB

of the first experiment.

Taking the analyzed mode level (– 28 dB at 69 GHz) and

using [8, fig. 3], the 12-dB resonance spikes correspond to

cavity losses of about 0.01 dB for the H02 mode. Scaling up

these losses to 0.02 dB because of the increase in length of the

new taper, the spike of 0.1 dB corresponds to — 50 dB, com-

paring fa~orably with the analysis (Fig. 8). Even if one as-

sumes losses of 0.1 dB in the new taper the spike of 0.1 dB

corresponds to a maximum mode level of — 42 dB. This gives

us a strong indication that the actual performance should be

close to the expectations.

VII. THE MODE CONVERSION Brwow AND AT CUTOFF

The experiment mentioned before and the analysis of

various other tapers showed that the mode conversion at

cutoff does not exhibit a singularity as implied in [9] 2 and

continues to decrease at frequencies below cutoff. This can

t Incidentally, the calculations in [9] are in error below and also
closely above cutoff due to use of wrong initial boundary conditions at
Z=o.

~v~ %v~ w ~ zv~ %v~

.Ej=
Az Az Az

BELOW CUTOFF AT CUTOFF AaOVE CUTOFF

Ye-–
, J@fAz Z ‘J-GPO Az Bz

@cPo Y=i~OAz

Fig. 10. Equivalent circuit of tapered waveguide section in the
vicinity of a cross section at cutoff.

easily be explained with the aid of an equivalent lrrmped-

element circuit derived from (1) for the H02 mode.

Fig. 10 shows a few sections neighboring the cross section

at cutoff. VS, 1S represent the voltage and current sources

impressed by the Hol mode through mode conversion. To the

left and away from this cross section, the Ho2-mode voltage

and mode current are strongly attenuated when transmitted

to either left or right. The cutoff section itself differs from

the others in that the admittance per unit length j@2/uPo)

vanishes. The voltages VS and currents Is, though, remain

finite and excite an H,z wave with small amplitude, propa-

gating to the right and becoming part of the accumulated

‘mode 2 in the propagating section of the taper. The transmis-

sion to the left is, of course, strongly attenuated through re-

flection by the sections below cutoff.

For further illustration, an amplified and cutout view of

Fig. 8 is presented in Fig. 11. The computation of the mode

conversion was performed with the Hol mode incident at the

large end diameter. Above cutoff, the Hot mode appears with

significant energy at the small end only. When the frequency

decreases and crosses the cutoff frequency, the output power

pzo decreases rapidly but monotonic to zero. However, the

energy of the HOZ mocle at the input increases to about the

level which was observed at the output above cutoff. Below

the cutoff frequency, all energy converted into the HO.Z mode

between the input and the cutoff region is reflected and must

appear at the input.

VIII. CONCLUSIONS

It has been shown that the conventional optimized taper

designs fails if the ratio of the end diameter becomes too large.

The reason for this was found to be the fact that the recon-

version from the spurious mode to the incident mode is

neglected. By implementing well-known but complicated

design equations, the design can be considerably improved,

A further improvement is possible if the design is based on

the specification of the second or third sidelobe level as design

objective and/or applying phase predistortion. From a pure

synthesis point of view this solution is hardly attractive and a

genuine optimization remains desirable. However, as long as

there is no exact and explicit solution of the coupled-wave
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Fig. 11. Computed mode conversion of the 40-dB taper in the
vicinity of the cutoff frequency of the H02 mode.

equations available, such an optimization has to be performed

numerically. This is no trivial problem because of the severe

constraint that, at least for manufacturing reasons, the slope

should be continuous and monotonic. Nevertheless, with

available computer programs for synthesis and analysis

combined, the design of’ tapers for any mode discrimination

and ratios az/al can be accomplished in a short time if an

interactive operating mode is possible.

Designed with this method, various 40-dB tapers having a

small end diameter of 0.375 in and a large end diameter of

2.0 in were built. The HiIz level found in a preliminary test

agrees with the computed results and is below — 40 dB. More-

over, it has been found that the mode conversion at cutoff

of the spurious mode does not show any anomalies.
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Calculation of Inductance of Finite-Length Strips

and its

A.

Variation with Frequency
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Absfracf—The inductances of finite-length strips over a ground
plane are calculated by the Galerkin method. The formulation is in
terms of the quasi-static skm-eff ect equation. The numerical tech-
nique used is discussed and sample results are presented.
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1. INTRODUCTION

T

HE CALCULATION of inductance of finite-length

conducting strips is currently of some interest. The

strips concerned, for example, could take the form of

interconnections between active and passive elements in

integrated circuits or alternatively, guiding structures such as

microstrip lines in microwave integrated-circuit modules. In

general, semiempirical formulas of Grover [1] are used, but

these are not always satisfactory, nor are they compre-

hensive.

The capacitances associated with such structures have

been calculated by several authors [2 ]– [4] and use, among


