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increases to 2.6 W but the efficiency drops to approximately
10 percent. Assuming some RF power loss to the resonant
circuit (and lead resistance), these predictions agree reasonably
well with the observed performance at 9.6 GHz: 1.8 W, 8.8
percent at Vp=18 V and 2.2 W, 7.1 percent at 28 V.

VIII. CoNCLUSIONS

It is concluded that Q-mode operation is present in the
experimental devices that are supercritically doped for the
following reasons. The RF voltage is sufficient for domain
quenching or LSA operation, but the LSA mode has been
shown not to exist in these devices. All of the experimental
characteristics are consistent with the Q mode; for example,
power and frequency increase monotonically with bias-voltage
increase. The oscillators are widely tunable above the transit
time frequency. The chip RF capacitance is two to four times
the low-field capacitance. Finally, the RF power and effi-
ciency calculated by Q-mode theory for operation at 20 and
30-V bias are in good agreement with the values measured
experimentally, if some RF circuit loss is assumed to be
present. Thus experiments with pulse-biased highly doped TE
devices have verified Q-mode operation in X-band waveguide
circuits over a bias-voltage range from approximately twice to
approximately six times the threshold value., A broad fre-
quency range of operation was obtained for proper RF circuit
loading of chips in small device packages. The highest effi-
ciency was obtained with GaAs material of nt-n-n* construc-
tion which exhibited a current drop of greater than 30 percent.

Analysis of the post-type waveguide circuit showed that
oscillation occurs with TE devices when the post to short-
plane separation is about one-half waveguide wavelength.
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When viewed from the chip, the circuit is operating slightly
below the frequency of parallel circuit resonance. Circuit RF
loading effects were shown to be important for wide band-
width operation of quenched-domain mode oscillators.
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On the Optimum Design of Tapered Waveguide Transitions

RUDOLF P. HECKEN axp ALFREDO ANUFF

Abstract—It has been found experimentally that the conventional
optimization of waveguide tapers for the interconnection of circular
waveguides with different diameters fails if the ratio in the diameters
becomes too large, With the aid of an accurate numerical analysis
program, the reason for the failure was found to be the reconversion
from the unwanted mode to the main mode, which is neglected in alt
known synthesis procedures. The performance of tapers can be con-
siderably improved by the implementation of other design equations
and establishing new design criteria. This results in somewhat longer
tapers. Various tapers were designed according to these procedures
for a maximum of —40-dB H,,-mode level between 40 and 110 GHz,
and preliminary measurements on fabricated units substantiate the
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improvement. It is further shown that the mode conversion at cutoff
does not exhibit any singularity.

I. INTRODUCTION

NHOMOGENEOUS TEM transmission lines and wave-
J:[ guides in the form of tapered matching sections or

tapered waveguide transitions are frequently used for
very broad-band applications [1]~[3]. For the intended use of
millimeter waves as a transmission medium in communica-
tion systems, tapered circular waveguide transitions are
needed which do not generate spurious modes above a toler-
able level [4]. The problem in the design of these inhomoge-
neous waveguides is basically that of specifying a distributed
inhomogeneity for minimum mode conversion and/or mini-
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mum reflections over a specific frequency range. If the physi-
cal length of the device is at the same time kept at a minimum,
the design is optimum.

Based on the representation of the electromagnetic field
in the inhomogeneous region by an infinite set of cylindrical
normal modes, an approximate analytical solution of the
minimization of the mode conversion has been reported by
Unger [3] and Tang [5], but it appears that these theories
lack quantitative restrictions which indicate the range of
validity of the approximations involved.

It has been found, experimentally at first, and then with
the aid of a computer program, that the optimization of tapers
based on these theories may result in large deviations from
the design objectives, namely in high mode conversions. The
design theory was then reexamined and the quality of the
approximations checked with a digital analysis program. It
turned out that all near-optimum distribution functions for
the inhomogeneity fail to yield acceptable tapers, except for
small differences between the waveguide radii to be inter-
connected by the transition.

Though the reasons for the deviations between syn-
thesized and analyzed performance are now exactly known, it
has not been possible to devise a rigorous synthesis procedure.
However, the studies resulted in guidelines allowing the
design of tapers which are close to an optimum design. The
numerical analysis program is used to verify the performance
and, if necessary, to modify the design such that the conver-
sion does not exceed the requirements.

In the following sections, some equations forming the
basis for the exact analysis and the synthesis are repeated in
order to be able to point to differences between the conven-
tional designs and to elaborate on the approximations which
ultimately lead to unsatisfactory results. Although the discus-
sion is restricted to tapered sections of circularly symmetric
waveguides which are excited by Hy, modes only, the results
and conclusions can be applied to many coupled wave prob-
lems.

II. ABSTRACT OF THE DrsicN THEORY

A tapered but otherwise perfectly circular and lossless
waveguide section is known schematically in Fig. 1. With an
Hy mode incident on this inhomogeneous section, the
strongest mode conversion occurs between the Ho and He
modes. If the taper is gradual enough, the interaction with
higher Hy, modes may be neglected, and the conversion
process is described by a quadruple of coupled transmission-
line equations [3]:

i o da Dbk
ds T e hr— R "
i, e 1da  2kk,
T L AT L
iz oo o dz bt — ki

n=1m=2andn=2,m=1 (1)

V. and I, are the mode voltages and mode currents of the
Hq, mode. 8, () is the propagation constant of the nth mode
propagating in a cylindrical waveguide of a particular cross
section having a radius a(z):

Ba® = w’uoeo — (kn/a)?
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Fig. 1. Schematic view of taper contour.

where w is the angular frequency, uo the free-space magnetic
permeability, e the permittivity of vacuum, and %, is the
nth zero of the Bessel function of the first kind, J;. For modes
above or below cutoff, Unger [3] and later Tang [5] trans-
formed the mode voltages and currents into forward- and
backward-scattered waves. However, useful design informa-
tion could be obtained only after neglecting both the reflec-
tions due to the variation of the local wave impedances and
the conversion into backward-scattered waves. Then (1) re-
duces to only a pair of coupled differential equations in for-
ward waves of the two modes 4; and Aa. In a further step
these waves are transformed into quasi-orthogonal waves
Wy and Ws. The solution for W, at the end of the taper, with
reconversion of Wy into Wi neglected, has been given as

oL
f (26)e=7% dp
0

in which p(z) can be interpreted as an accumulated phase
function [pr=p(L)] while 20 is the “distribution function”
of the mode conversion along the taper.

The actual design can be accomplished with two funda-
mental equations:

f ") da’ = f “sin (20 dyf 3)

ay 0

‘ W,(L) l o~ (2)

and
» cos (20) dp’
= [ cos (26) de’ @
0

yielding ¢ and 2 as function of p.

Unfortunately, these equations have been further ap-
proximated by both Unger and Tang with the result that the
simplified design formulas become altogether independent of
the transformation to quasi-orthogonal waves. Therefore, the
contours of the tapers reported by these authors are not
modified by the orthogonalization procedure. This simplifica-
tion comes by replacing sin (x) and cos {x) by x and 1, respec-
tively:

f,, jq(a') w = [ 0,,(20) i’ ()

e do’
PRV (6)
o A8

It should be noted that these simple design formulas could
have been obtained by solving the coupled wave equations in
A and A4 with reconversion from 4. into 4; neglected.
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I11. SoME EXPERIMENTAL RESULTS

Experimental results on a taper designed with the simpli-
fied formulas (5) and (6) are reported by Unger [3]. The
sin? x function was chosen as the distribution function and
the taper obtained is theoretically far from optimum, having
a length of about 35.56 in. Mode conversion of less than 50
dB has been measured, a result supporting the approximate
theory. No experimental results are reported by Tang on the
optimized sin® % taper. However, a taper using also the opti-
mized sin®x distribution in connection with the simple for-
mula was designed elsewhere [7]. The end diameters were
0.2612 in and 2.0 in, respectively, and the maximum expected
mode level was —45 dB. Measurements revealed an Hes level
of about —25 dB. Based also on the simple design equations,
another taper with end diameters of 0.375 in and 2.0 in was
built for a specified mode level of —40 dB. In order to ob-
tain shorter tapers, the modified Dolph—Chebyshev distribu-
tion function was applied [6]. Experiments with this taper
indicated also a high mode level of as much as —28 dB.

IV. THE ANALYSIS OF TAPERED WAVEGUIDE TRANSITIONS

In order to determine exactly whether mechanical
tolerances in the fabrication or other steps in the sequence of
approximations cause the failure of the design, a numerical
analysis program has been devised which for each desired
frequency directly integrates (1) along the length 2. This
method, in consequence, does not suffer from the various
approximations made for the purpose of obtaining a synthesis
method.

The essential result of interest here is the ratio PR of the
power level of mode 2 relative to the level of mode 1 at the
input (=0) or output (z=L) of the taper:

Re {VoI2*}
Re {ViI*}

Fig. 2 shows the computed mode level of the tapers designed
by Unger and Tang. Whereas the sin? x taper meets the re-
quirement (— 50-dB unwanted mode level below 75 GHz), the
optimized and therefore considerably shorter design by Tang
does not. Analyzing other optimized tapers with larger diam-
eter ratios, even larger deviations were found, thus confirming
the experimental results mentioned in the previous section.
Obviously, the optimization yields short tapers but also an
unexpectedly high unwanted mode level.

ML[dB] = 201log (PR) = 20log

A. Tests on the Validity of the Design Equations

One of the first tests performed was to find the range of
validity of the simple design equations (5) and (6) in connec-
tion with a near-optimum distribution function. In this test,
tapers have been analyzed all of which were designed for
40-dB mode discrimination and the same frequency range but
had different diameters at the small end while @ was kept
constant (¢e=1in). From Fig. 3 it is apparent that the simple
design equations are only useful for tapers with a; larger than
0.7 in if a near-optimum distribution function is applied.

In the next test, the mode conversion of tapers has been
examined which was designed on the basis of the more com-
plicated equations (3) and (4). The distribution function and
frequency range were the same as before. As it turns out
(Fig. 4), a taper with a; even as small as 0.4 in still meets the
requirement. With decreasing ¢, the deviations again become
excessive, but it is interesting to note that the deviations
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Fig. 3. ML as function of frequency with small end diameter as

parameter [design based on (5) and (6)].

occur now at the second sidelobe. For radii larger than 0.5 in
the specified mode level is never exceeded and in these cases,
at least, the use of the design equations (3) and (4) must be
preferred. (As an interesting case for illustration, a taper
similar to Unger’s example was synthesized for the same
requirements, but the modified Dolph—Chebyshev distribu-

4
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tion and the design equations (3) and (4) were used. The
analyzed mode level was —47 dB, which comes fairly close
to the design goal (—50 dB). However, the length of this
taper would be only 17.92 in, mainly due to the use of the
modified Dolph—Chebyshev distribution.)

B. Mode Conversion Along the Taper

In the attempt to improve the design procedure for tapers
with still smaller radii, another test has been performed. As is
evident from the approximate solution (2), the design and the
theoretical mode conversion rely on the Fourier integral:

z

(20) e—iLim)z’ Jyf

w(x) = u(x) + jo(x) = f

0

(7

where a new variable has been introduced with x=w(p/pr).
Using for 20 the modified Dolph—Chebyshev distribution of a
40-dB taper (¢;=0.1875 in; a2 = 1.0 in) and for pyz, its minimum
value pr, min, (7) has been numerically integrated for values of
x between 0 and . Fig. 5 depicts lw(x)l which builds up to a
large maximum at x==/2 along the taper, and decreases
thereafter to its “correct” value at x=a. This large value of
!w(x)] at the center of the distribution indicates that within
a certain region the coupling from mode 2 to mode 1, ie.,
reconversion, might not be negligible in an optimized design.

To prove this, the analysis program has been modified
so as to eliminate the reconversion in (1). This condition still
maintains the effects of reflections of both waves and the
coupling from mode 1 into both the forward- and the back-
wards-traveling waves of mode 2. Analyzing the failing 40-dB
taper with this modified program showed that the taper under
these artificial conditions would have exactly the specified
mode conversion, a result which establishes the following two
important conclusions. 1) Since the design equations do not
account for the reflections and coupling to backward modes,

3
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Fig. 5. |w(®)!, (x), and v(x) for a 40-dB taper designed with the modi-
fied Dolph—Chebyshev distribution for the first sidelobe level, p1=7.1.

these effects are in fact still negligible. 2) In the conventional
optimized design of tapers with large ratios of @z/a4, it is the
reconversion from mode 2 to mode 1 which causes large devia-
tions from the objectives.

V. AN IMPROVED DESIGN PROCEDURE

Knowing the esseutial error in the synthesis, one has two
obvious means at hand to improve the design theory such
that any optimum or near-optimum distribution function is
meaningful.

A, Iterative Solution

One possibility is to use the wave equations without any
further approximations and to derive the design information
from a more accurate iterative solution. The resulting pro-
cedure is complicated and yields tapers whose analyzed per-
formance meets (as it should) exactly the specified require-
ment at the design frequency if a sufficient number of itera-
tions is made. However, below the design frequency the per-
formance is still poor if @;:<0.4 in. Thus this attempt is not
useful.

B. Design with Larger Values for pr min

The other and more effective method to design short but
satisfactory tapers relies on the possibility of forcing the ap-
proximate solution (2) to be valid, even when applying a
(near-) optimum distribution. This is done by increasing pz
beyond its “minimum” value. In view of (7), this corresponds
to an increase of the oscillations (see Fig. 5) of the real and
imaginary parts of w(x) and, as a consequence, it entails more
frequent cancellations in the functions #{x) and v(x), thus
preventing the rapid buildup of their amplitudes to extreme
values, The true minimum for p; must, infgeneral, be de-
termined for each design by trial and error, which may be-
come cumbersome as the following brief description shows.
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The procedure can be based either on the simple design
equations (5) and (6) or on the more accurate equations (3)
and (4). In the following example we will use the latter be-
cause they lead to slightly (=5 percent) shorter tapers.

Fig. 6 shows three different graphs of the response of the
modified Dolph~Chebyshev distribution, each corresponding
to three different ripple parameters B [6]. Their values have
been chosen such that either the maximum of the first, second,
or third sidelobe reach the desired mode level of —40 dB. For
each B value one finds a value pr. min.* For these three pairs of
parameters (B and prmin), tapers have been synthesized and
subsequently analyzed in Fig. 6. The design for the first side-
lobe level (p;=7.1) deviates by 13.4 dB, but this taper is only
16.3 in long. The design for the second sidelobe (p;=8.1) is
still in error by as much as 6 dB, whereas the design for the
third sidelobe (ps=10.2) shows an error of only 0.1 dB at the
highest frequency. The lengths of these two tapers are 18.9
in and 24.0 in, respectively.

C. Mode Conversion Along a Taper of the Improved Design

1t is instructive to examine again the function w(x) for the
case where prmin=p3=10.2. From Fig. 7 one finds, sur-
prisingly, that the maximum mode level along the taper is not
much smaller than in the case of the conventional design for
the first sidelobe level. However, the amplitude of mode 2

1 The smallest value pz min = p1 corresponds to the first sidelobe and
is the one used in the conventiona! design method.
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(represented by | w(x) l ) builds up more gently and remains at
a relatively high level over a wide range of x.

From these observations we come to the conclusion that
the approximate solution of the coupled wave equations must
be mainly in error due to the continuous phase distortion of
the main mode caused by the spurious mode. This, however,
produces a large phase error in the spurious mode itself which
then, of course, does not behave in the way implied by the
Fourier integral-type solution (7).

D. Modification of Design Equation (6)

The sensitivity of a design on phase distortions is shown
by the following experiment. Recognizing that (5) specifies
the increments of the magnitude of mode 2 and that (6) de-
termines the right amount of phase of that particular incre-
ment, the latter has been arbitrarily modified into

—_— ’ dp,
°T f AB[(L — ()]

where e(p) is an empirical function of the type

e(p) = Wesin (wp/pL)

with W, being a small value found by experimentation. Using
this equation together with the corresponding equation (6),
various tapers having a —40-dB mode level at the second side-
lobe (p;=8.1) have been synthesized and analyzed. Fig. 8
shows the response of an example with W,=0.05. This taper
meets the requirement over the whole frequency range and is
only 20.68 in long.

VI. EXPERIMENTAL RESULTS oN A DESIGN
with PEASE DIisTORTION

Based on the analysis of the last design example (Fig. 8),
several tapers have been built. Since reliable measurements of
spurious modes at levels below —40 dB are extremely difficult
and require elaborate equipment, the following simple test
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was performed. By mounting two tapers back to back as
shown in Fig. 9, a resonant cavity for Hg; modes is obtained
for frequencies below the lowest cutoff frequency f.» which is
determined by the smallest radius ¢;. By transmitting an Hp
mode with f<f., through this two-port, the Ho: mode gen-
erated inside is trapped in the cavity and causes a sharp in-
crease in the insertion loss of the Hg mode at discrete fre-
quencies [8]. A resonance spike of less than 0.1 dB was the
largest in amplitude which could be identified between 60
and 70 GHz. Below 60 GHz, no resonance spikes were de-
tectable. In a similar experiment, one of the new tapers was
replaced by one of the earlier designs. In this case, spikes of
about 12 dB occur which may be compared with the 0.1 dB
of the first experiment.

Taking the analyzed mode level (—28 dB at 69 GHz) and
using [8, fig. 3], the 12-dB resonance spikes correspond to
cavity losses of about 0.01 dB for the Hg, mode. Scaling up
these losses to 0.02 dB because of the increase in length of the
new taper, the spike of 0.1 dB corresponds to —50 dB, com-
paring fayorably with the analysis (Fig. 8). Even if one as-
sumes losses of 0.1 dB in the new taper the spike of 0.1 dB
corresponds to a maximum mode level of —42 dB. This gives
us a strong indication that the actual performance should be
close to the expectations.

VII. THE MopE CONVERSION BELOW AND AT CUTOFF

The experiment mentioned before and the analysis of
various other tapers showed that the mode conversion at
cutoff does not exhibit a singularity as implied in [9]% and
continues to decrease at frequencies below cutoff. This can

2 Incidentally, the calculations in [9] are in error below and also
closely above cutoff due to use of wrong initial boundary conditions at
z=0,
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easily be explained with the aid of an equivalent lumped-
element circuit derived from (1) for the Hg, mode.

Fig. 10 shows a few sections neighboring the cross section
at cutoff. Vg, Iy represent the voltage and current sources
impressed by the Hg mode through mode conversion. To the
left and away from this cross section, the Hyp-mode voltage
and mode current are strongly attenuated when transmitted
to either left or right. The cutoff section itself differs from
the others in that the admittance per unit length 7(8%/wuo)
vanishes. The voltages Vg and currents Ig, though, remain
finite and excite an Ho wave with small amplitude, propa-
gating to the right and becoming part of the accumulated

‘mode 2 in the propagating section of the taper. The transmis-

sion to the left is, of course, strongly attenuated through re-
flection by the sections below cutoff.

For further illustration, an amplified and cutout view of
Fig. 8 is presented in Fig. 11. The computation of the mode
conversion was performed with the Hy mode incident at the
large end diameter. Above cutoff, the Hys mode appears with
significant energy at the small end only. When the frequency
decreases and crosses the cutoff frequency, the output power
Py decreases rapidly but monotonic to zero. However, the
energy of the Ho: mode at the input increases to about the
level which was observed at the output above cutoff. Below
the cutoff frequency, all energy converted into the Hg mode
between the input and the cutoff region is reflected and must
appear at the input.

VIII. CoNCLUSIONS

It has been shown that the conventional optimized taper
designs fails if the ratio of the end diameter becomes too large.
The reason for this was found to be the fact that the recon-
version from the spurious mode to the incident mode is
neglected. By implementing well-known but complicated
design equations, the design can be considerably improved.
A further improvement is possible if the design is based on
the specification of the second or third sidelobe level as design
objective and/or applying phase predistortion. From a pure
synthesis point of view this solution is hardly attractive and a
genuine optimization remains desirable. However, as long as
there is no exact and explicit solution of the coupled-wave
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equations available, such an optimization has to be performed
numerically. This is no trivial problem because of the severe
constraint that, at least for manufacturing reasons, the slope
should be continuous and monotonic. Nevertheless, with
available computer programs for synthesis and analysis
combined, the design of tapers for any mode discrimination
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and ratios @s/a: can be accomplished in a short time if an
interactive operating mode is possible.

Designed with this method, various 40-dB tapers having a
small end diameter of 0.375 in and a large end diameter of
2.0 in were built. The Hg, level found in a preliminary test
agrees with the computed results and is below —40 dB. More-
over, it has been found that the mode conversion at cutoff
of the spurious mode does not show any anomalies.
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Calculation of Inductance of Finite-Length Strips

and its Variation with Frequency

A. GOPINATH anp P. SILVESTER

Abstract—The inductances of finite-length strips over a ground
plane are calculated by the Galerkin method. The formulation is in
terms of the quasi-static skin-effect equation. The numerical tech-
nique used is discussed and sample results are presented.
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1. INTRODUCTION

HE CALCULATION of inductance of finite-length
I conducting strips is currently of some interest. The
strips concerned, for example, could take the form of
interconnections between active and passive elements in
integrated circuits or alternatively guiding structures such as
microstrip lines in microwave integrated-circuit modules. In
general, semiempirical formulas of Grover [1] are used, but
these are not always satisfactory, nor are they compre-
hensive.
The capacitances associated with such structures have
been calculated by several authors [2]-[4] and use, among



